Modulhandbuch des Studiengangs Lehramt an Gymnasien Informatik

Anhang III: Modulhandbuch (*nur elektronisch veröffentlicht*)
Inhaltsverzeichnis des Modulhandbuchs

<table>
<thead>
<tr>
<th>Module</th>
<th>Seitennummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentorensystem</td>
<td>4</td>
</tr>
<tr>
<td>Funktionale und objektorientierte Programmierkonzepte</td>
<td>6</td>
</tr>
<tr>
<td>Höhere Mathematik I</td>
<td>8</td>
</tr>
<tr>
<td>Automaten, formale Sprachen und Entscheidbarkeit</td>
<td>10</td>
</tr>
<tr>
<td>Algorithmen und Datenstrukturen</td>
<td>12</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>14</td>
</tr>
<tr>
<td>Informationsmanagement</td>
<td>16</td>
</tr>
<tr>
<td>Digitaltechnik</td>
<td>18</td>
</tr>
<tr>
<td>Rechnerorganisation</td>
<td>20</td>
</tr>
<tr>
<td>Computersystemsicherheit</td>
<td>22</td>
</tr>
<tr>
<td>Einführung in den Compilerbau</td>
<td>24</td>
</tr>
<tr>
<td>Architekturen und Entwurf von Rechnersystemen</td>
<td>26</td>
</tr>
<tr>
<td>Systemnahe und Parallele Programmierung</td>
<td>28</td>
</tr>
<tr>
<td>Modellierung, Spezifikation und Semantik</td>
<td>30</td>
</tr>
<tr>
<td>Computational Engineering und Robotik</td>
<td>32</td>
</tr>
<tr>
<td>Computer Netzwerke und verteilte Systeme</td>
<td>34</td>
</tr>
<tr>
<td>Formale Methoden im Softwareentwurf</td>
<td>36</td>
</tr>
<tr>
<td>Betriebssysteme</td>
<td>38</td>
</tr>
<tr>
<td>Visual Computing</td>
<td>40</td>
</tr>
<tr>
<td>Seminar aus Data Mining und Maschinellem Lernen</td>
<td>42</td>
</tr>
<tr>
<td>Seminar Telekooperation</td>
<td>44</td>
</tr>
<tr>
<td>IT Sicherheit, Benutzbarkeit, und Gesellschaftliche Aspekte</td>
<td>46</td>
</tr>
<tr>
<td>Bachelor-Praktikum</td>
<td>48</td>
</tr>
<tr>
<td>Praktikum Visual Computing</td>
<td>50</td>
</tr>
<tr>
<td>Internet - Praktikum Telekooperation</td>
<td>52</td>
</tr>
<tr>
<td>Fachdidaktik der Informatik</td>
<td>54</td>
</tr>
<tr>
<td>Fachdidaktik der Informatik II</td>
<td>56</td>
</tr>
<tr>
<td>Fachdidaktik der Informatik III</td>
<td>58</td>
</tr>
<tr>
<td>Zentrale Ideen und Werkzeuge für MINTplus</td>
<td>60</td>
</tr>
<tr>
<td>Seminar Angewandte Aspekte der Informatik im Unterricht</td>
<td>62</td>
</tr>
<tr>
<td>Praxisphase III: Fachdidaktikschule schulpraktische Studien Informatik</td>
<td>63</td>
</tr>
</tbody>
</table>
1. Fachspezifischer Pflichtbereich

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Mentorensystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Nr.</td>
<td>20-00-0000</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>0 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>h</td>
</tr>
<tr>
<td>Modulbieter</td>
<td>1 Semester</td>
</tr>
<tr>
<td>AngebotsDatum</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Studiendekan/Studiendekanin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0000-tt</td>
<td>Mentorensystem</td>
<td>0</td>
<td>Tutorium</td>
<td></td>
</tr>
</tbody>
</table>

2 Lerninhalte

In wöchentlichen Gesprächen zwischen einem erfahrenen Studierenden aus höherem Semester (Mentor_in) und einem Studierenden im ersten Semester (Mentee) werden folgende Inhalte thematisiert:
- Selbstorganisation zu Studienbeginn
- Orientierung in Bezug auf die Anforderungen des B. Sc. Informatik
- Nutzung von Lerngruppen
- Lernen an der Universität und Reflexion des Lernstandes
- Teamarbeit im Studium
- Umgang mit Prüfungen und Prüfungsvorbereitung
- Organisation und Strukturierung der Prüfungsphase

3 Qualifikationsziele/Lernergebnisse

Das Mentorensystem zielt darauf ab, dass die Studierenden ihr Studium selbstorganisiert strukturieren und planen, sodass sie zielorientiert studieren. Die Studierenden sind am Ende des Moduls in der Lage die Grundstruktur des Studiums zu erkennen sowie die Anforderungen der Studienfächer abzuschätzen und dementsprechend ihr Studium zu optimieren. Weiterhin sind sie in der Lage verschiedene Vorgehensweisen beim Lernen an der Universität zu reflektieren und auf ihr eigenes Lernverhalten zu übertragen.

4 Voraussetzung für die Teilnahme

5 Prüfungsform

Studienleistung

6 Voraussetzung für die Vergabe von Kreditpunkten

Bestehen der Modulabschlussprüfung (100%)

7 Benotung

bnb
<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>B.Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Die Materialien zum Mentorensystem werden über den entsprechenden Moodle-Kurs bereitgestellt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Modulbeschreibung

Modulname
Funktionale und objektorientierte Programmierkonzepte

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0004</td>
<td>10 CP</td>
<td>300 h</td>
<td>180 h</td>
<td>1 Semester</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Studiendekan/Studiendekanin

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0004-iv</td>
<td>Funktionale und objektorientierte Programmierkonzepte</td>
<td>10</td>
<td>integrierte Lehrveranstaltung</td>
<td>8</td>
</tr>
</tbody>
</table>

Lerninhalt

Themenschwerpunkte sind:
- Grundlegende Programmierkonzepte
- Grundlagen der funktionalen Programmierung
- Grundlagen der objektorientierten Programmierung
- Entwurf einfacher Softwaresysteme
- Einfache Typsysteme
- Grundlegende Datenstrukturen und Algorithmen und ihre Komplexität
- Rekursion
- Einfache Ein-/Ausgabe
- Grundlagen des Testens
- Dokumentation von Sourcecode

Qualifikationsziele/Lernergebnisse
Nach erfolgreichem Abschluss der Veranstaltung sind Studierende mit den Grundlagen von funktionalen und objektorientierten Programmiersprachen vertraut und die Studierenden können die folgenden Aufgaben bewältigen:

- einfache Programmieraufgaben mit Hilfe von funktionalen und/oder objektorientierten Programmiersprachen systematisch lösen;
- Qualitätssicherung mittels einfacher (Unit-) Tests durchführen;
- die Komplexitätsklassen von Algorithmen und Datenstrukturen verstehen und darauf basierend die Eignung selbiger für konkrete Aufgaben einschätzen;
- Sourcecode grundlegend unter Zuhilfenahme von Standardwerkzeugen dokumentieren.
4 | **Voraussetzung für die Teilnahme**

5 | **Prüfungsform**
 Fachprüfung schriftlich 120 min.
 Studienleistung schriftlich/mündlich
 Das erfolgreiche Bestehen der Studienleistung ist Zulassungsvoraussetzung zur Fachprüfung.
 Studienleistungen können erworben werden durch Übungsaufgaben, Praktikumsaufgaben, Vorträge, oder ähnlichen zu mehreren Gelegenheiten absolvierbaren Leistungsüberprüfungen. Für eine Zulassung sollten nicht mehr als 50% der in all diesen Bereichen erzielbaren Leistungen erforderlich sein.

6 | **Voraussetzung für die Vergabe von Kreditpunkten**
 Bestehen der Modulabschlussprüfung (100%)

7 | **Befolgung**
 Standard

 In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

8 | **Verwendbarkeit des Moduls**

 B.Sc. Informatik
 B.Sc. Wirtschaftsinformatik
 B.Sc. Psychologie in IT
 Joint B.A. Informatik
 B.Sc. Sportwissenschaft und Informatik
 B.Sc. Computational Engineering
 B.Sc. Informationssystemtechnik
 LaG Informatik

 Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

9 | **Literatur**
 ● How to Design Programs; M. Felleisen et al.; The MIT Press Cambridge
 ● Structure and Interpretation of Computer Programs; H. Abelson et al.; Springer
 ● Thinking in Java; B. Eckel; Prentice Hall
 ● Christian Ullenboom: Java ist auch eine Insel; Galileo Computing

10 | **Kommentar**
Modulbeschreibung

Modulname
Höhere Mathematik I

Modul Nr. 04-00-0125/f

<table>
<thead>
<tr>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 CP</td>
<td>210 h</td>
<td>135 h</td>
<td>1 Semester</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Sprache Deutsch

Modulverantwortliche Person Robert Haller-Dintelmann

1. **Kurse des Moduls**

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-00-0118-vu</td>
<td>Höhere Mathematik I</td>
<td>7</td>
<td>Vorlesung und Übung</td>
<td>5</td>
</tr>
</tbody>
</table>

2. **Lerninhalt**

3. **Qualifikationsziele/Lernergebnisse**
Die Studierenden sollen Kenntnisse und Verständnis über grundlegende Begriffsbildungen und Resultate der Vektorrechnung und Linearen Algebra, ihre wechselseitigen Beziehungen und geometrische Bedeutung erwerben, Kenntnisse in der Analysis von Funktionen einer Veränderlichen und ihre Rolle in den Natur- und Ingenieurwissenschaften erwerben, die Fähigkeit erwerben, die wichtigsten zugehörigen rechnerischen Methoden anzuwenden und in ihrer Bedeutsamkeit und Zuverlässigkeit beurteilen zu können, mit den Anfangsgründen der Stochastik vertraut gemacht werden, die Grundvoraussetzungen erwerben, um sich im späteren Studium und Beruf benötigte weitergehende mathematische Kenntnisse selbst erarbeiten zu können.

4. **Voraussetzung für die Teilnahme**

5. **Prüfungsform**
Fachprüfung schriftlich 90 min.
Studienleistung schriftlich/mündlich
Das erfolgreiche Bestehen der Studienleistung ist Zulassungsvoraussetzung zur Fachprüfung. Studienleistungen können erworben werden durch Übungsaufgaben, Praktikumsaufgaben, Vorträge, oder ähnlichen zu mehreren Gelegenheiten absolvierbaren Leistungsüberprüfungen. Für eine Zulassung sollten nicht mehr als 50% der in all diesen Bereichen erzielbaren Leistungen erforderlich sein.

| 6 | Voraussetzung für die Vergabe von Kreditpunkten |
| | Bestehen der Modulabschlussprüfung (100%) |

| 7 | Benotung |
| | Standard |

8	Verwendbarkeit des Moduls
	Joint Bachelor of Arts Informatik
	LaG Informatik
	Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

| 9 | Literatur |

| 10 | Kommentar |
| | Entfällt bei Mathematik als zweitem Fach, stattdessen sind 7 CP mehr an Leistungen aus dem fachspezifischen Wahlbereich zu erbringen |
Modulbeschreibung

Modulname
Automaten, formale Sprachen und Entscheidbarkeit

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-10-0120</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>2 Semester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
M. Otto

1 Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-10-0120-vu</td>
<td>Automaten, formale Sprachen und Entscheidbarkeit</td>
<td>5</td>
<td>Vorlesung und Übung</td>
<td>3</td>
</tr>
</tbody>
</table>

2 Lerninhalt
Einführung: Transitionssysteme, Wörter, Sprachen; Mathematische Grundbegriffe und elementare Beweismethoden; Endliche Automaten und reguläre Sprachen; Determinismus und Nichtdeterminismus, Abschlusseigenschaften und Automatenkonstruktionen; Sätze von Kleene, Myhill-Nerode, Pumping Lemma; Grammatiken und die Chomsky-Hierarchie; kontextfreie Sprachen, Abschlusseigenschaften, Pumping Lemma, CYK Algorithmus; Berechnungsmodelle: Kellerautomaten, Turingmaschinen; Entscheidbarkeit und Aufzählbarkeit in der Chomsky-Hierarchie

3 Qualifikationsziele/Lernergebnisse
Die Studierenden lernen elementare Techniken und Methoden der diskreten Mathematik im Umfeld von formalen Sprachen und Automaten kennen und anwenden; sie lernen, endliche Automaten als Beispiel eines fundamentalen Berechnungsmodells operational und semantisch zu interpretieren und zu analysieren.
Sie verfügen über die notwendigen Grundkenntnisse, Grammatiken und formale Sprachen im Rahmen der Chomsky-Hierarchie und zugehöriger Berechnungsmodelle einzuordnen und zu analysieren.

4 Voraussetzung für die Teilnahme
keine

5 Prüfungsform
Fachprüfung schriftlich 90 min.

Studienleistung schriftlich/mündlich

Das erfolgreiche Bestehen der Studienleistung ist Zulassungsvoraussetzung zur Fachprüfung.

Studienleistungen können erworben werden durch Übungsaufgaben, Praktikumsaufgaben, Vorträge, oder ähnlichen zu mehreren Gelegenheiten absolvierbaren Leistungsüberprüfungen. Für eine Zulassung sollten nicht mehr als 50% der in all diesen Bereichen erzielbaren Leistungen erforderlich sein.
<table>
<thead>
<tr>
<th></th>
<th>Voraussetzung für die Vergabe von Kreditpunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung (100%)</td>
</tr>
<tr>
<td>7</td>
<td>Benotung</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>8</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>Pflichtveranstaltung in Informatik-Studiengängen</td>
</tr>
<tr>
<td></td>
<td>Bestandteil des BSc-Mathematikmoduls „Formale Grundlagen der Informatik“</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
<tr>
<td>9</td>
<td>Literatur</td>
</tr>
<tr>
<td></td>
<td>Schöning: Theoretische Informatik --kurz gefasst</td>
</tr>
<tr>
<td></td>
<td>Hopcroft, Motwani, Ullman: Einführung in die Automatentheorie, formale Sprachen und Komplexitätstheorie</td>
</tr>
<tr>
<td></td>
<td>Wegener: Theoretische Informatik --eine algorithmenorientierte Einführung</td>
</tr>
<tr>
<td>10</td>
<td>Kommentar</td>
</tr>
</tbody>
</table>
Modulbeschreibung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Algorithmen und Datenstrukturen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Nr.</td>
<td>20-00-0005</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>10 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>300 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>180 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Studiendekan/Studiendekanin</td>
</tr>
</tbody>
</table>

1 Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0005-iv</td>
<td>Algorithmen und Datenstrukturen</td>
<td>10</td>
<td>integrierte Lehrveranstaltung</td>
<td>8</td>
</tr>
</tbody>
</table>

2 Lerninhalt

- Datenstrukturen: Array, Listen, Binäre Suchbäume, B-Bäume, Graphenrepräsentationen, Hashtabellen, Heaps

- Algorithmen: Sortieralgorithmen, Stringmatching, Traversieren, Einfügen, Suchen und Löschen bei bestimmten Datenstrukturen, Kürzeste Wege Suche, Minimal Spannende Bäume

- Asymptotische Komplexität

- NP-Vollständigkeit

- Algorithmisches Strategien: Divide-and-Conquer, Dynamische Programmierung, Brute-Force, Greedy, Backtracking, Metaheuristiken

3 Qualifikationsziele/Lernergebnisse

In dieser Veranstaltung lernen Studierende grundlegende Datenstrukturen und Algorithmen sowie die Komplexitätsklassen P, NP und NPC kennen. Sie erwerben die Fähigkeiten, die Grundprinzipien der Algorithmik anzuwenden und asymptotische Komplexität einzuschätzen und zu bestimmen. Außerdem verstehen sie bedeutende algorithmische Strategien und können diese anwenden.

4 Voraussetzung für die Teilnahme

Empfohlen: Funktionale und objektorientierte Programmierkonzepte
Prüfungsform
| Fachprüfung schriftlich 120 min. |
| Studienleistung schriftlich/mündlich |
| Das erfolgreiche Bestehen der Studienleistung ist Zulassungsvoraussetzung zur Fachprüfung. |
| Studienleistungen können erworben werden durch Übungsaufgaben, Praktikumsaufgaben, Vorträge, oder ähnlichen zu mehreren Gelegenheiten absolvierbaren Leistungsüberprüfungen. Für eine Zulassung sollten nicht mehr als 50% der in all diesen Bereichen erzielbaren Leistungen erforderlich sein. |

Voraussetzung für die Vergabe von Kreditpunkten
| Bestehen der Modulabschlussprüfung (100%) |

Benotung
| Standard |
In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

Verwendbarkeit des Moduls
| B.Sc. Informatik |
| B.Sc. Wirtschaftsinformatik |
| B.Sc. Psychologie in IT |
| Joint B.A. Informatik |
| B.Sc. Sportwissenschaft und Informatik |
| B.Sc. Computational Engineering |
| B.Sc. Informationssystemtechnik |
| LaG Informatik |

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

Literatur
| wird in der Veranstaltung bekannt gegeben |

Kommentar
Modulbeschreibung

Modulname
Software Engineering

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Modulduer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0017</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Studiendekan/Studiendekanin

1 Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0017-iv</td>
<td>Software Engineering</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

2 Lerninhalt
Vermittlung eines grundlegenden Überblicks über die wesentlichen Bereiche des Software Engineering sowie der Kenntnisse und Fähigkeiten, die für die Modellierung und Realisierung kleinerer Softwaresysteme notwendig sind.
Die Schwerpunkthemen sind:
● Softwareprojektmangement
● Softwareprozessmodelle
● Anforderungsmanagement
● Softwareentwicklungswerkzeuge
● Software Qualität; insbesondere:
 ○ Testprozesse (automatisiertes Testen, Testabdeckungsmaße, Debugging)
 ○ grundlegende Softwaremetriken
● Objektorientierte Analyse und Entwurf
● Modellierung mittels UML
● Entwurfsmuster (Design Patterns)

3 Qualifikationsziele/Lernergebnisse
Nach dem erfolgreichen Abschluss der Veranstaltung sind die Studierenden in der Lage folgende Aufgaben zu bewältigen:
● Die wesentlichen Bereiche des Software Engineering zu benennen und im Kontext eines Softwareentwicklungsprojekts einzuordnen;
● Etablierte Softwareentwicklungswerkzeuge zielgerichtet einzusetzen;
● Grundlegende Qualitätssicherung mit Hilfe von automatisierten Tests durchzuführen;
● Entwurf und Implementierung von objektorientierten Systemen unter Einsatz von UML und grundlegender Entwurfsmuster.
Voraussetzung für die Teilnahme

Empfohlen:
- Funktionale und Objektorientierte Programmierkonzepte
- Algorithmen und Datenstrukturen

Prüfungsform

Fachprüfung schriftlich 90 min.

Voraussetzung für die Vergabe von Kreditpunkten

Bestehen der Modulabschlussprüfung (100%)

Benotung

Standard

In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

Verwendbarkeit des Moduls

- B.Sc. Informatik
- B.Sc. Wirtschaftsinformatik
- B.Sc. Psychologie in IT
- Joint B.A. Informatik
- B.Sc. Sportwissenschaft und Informatik
- M.Sc. Sportwissenschaft und Informatik
- B.Sc. Computational Engineering
- B.Sc. Informationssystemtechnik
- LaG Informatik

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

Literatur

- Lehrbuch der Softwaretechnik: Softwaremanagement; H. Balzert; Springer
- Design Patterns - Elements of Reusable Object-Oriented Software; E. Gamma, R. Helm, R. Johnson, J. Vlissides; Prentice Hall
- Software Qualität - Testen, Analysieren und Verifizieren von Software; P. Liggesmeyer; Springer
- WHY PROGRAMS FAIL: A Guide to Systematic Debugging; A. Zeller; Morgan Kaufmann
- Writing Effective Use Cases; A. Cockburn; Pearson

Kommentar
Modulbeschreibung

Modulname
Informationsmanagement

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotssturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0015</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Studiendekan/Studiendekanin</td>
</tr>
</tbody>
</table>

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0015-iv</td>
<td>Informationsmanagement</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalt

1. **Grundkonzepte des Informationsmanagement:** Konzepte von Informationssystemen, Informationsspeicherung/abfrage, Suchen, Durchstöbern, deklarativer Zugriff und Zugriff über explizite Navigation.
2. **Qualitätsmerkmale:** Konsistenz, Skalierbarkeit, Verfügbarkeit, Zuverlässigkeit.
3. **Datenmodellierung:** Konzeptionelle Datenmodelle (ER / UML Strukturdiagramme), Konzeptueller Entwurf, Operationale Modelle (relationales Modell), Abbildung vom konzeptuellen auf das operationale Modell.
4. **Relational Modell:** Operatoren, Relationale Algebra, Relationale Kalküle.
5. **Auswirkungen auf Abfragesprachen:** basierend auf relationaler Algebra und relationalen Kalkülen, Entwurfstheorie und Normalisierung.
6. **Abfragesprachen:** SQL (im Detail), QBE, Xpath (übersichtsartig).
7. **Speichermedien:** RAID, SSD, Zwischenspeicherung und Caching.
8. **Implementierung relationaler Operatoren:** Implementierungsalgorithmen, Kostenfunktionen.
9. **Abfrageoptimierung:** Heuristische Abfrageoptimierung, Kostenbasierte Abfrageoptimierung.
10. **Transaktionsverarbeitung:** Flache Transaktionen
11. **Nebenläufigkeitssteuerung und Korrektheitskriterien:** Serialisierbarkeit, Wiederherstellbarkeit, ACA, Striktheit, Isolationsgrade, Lock-basierte Ablaufplanung, 2PL
12. **Multiversionen:** zur Kontrolle der Nebenläufigkeit, Optimistische Ablaufplanung, Logging, Zwischenstände (Checkpointing), Wiederherstellung / Neustart
13. **Aktuelle Trends im Bereich Informationsmanagement:** Hauptspeicherdatenbanken, Spaltenbasierte Datenhaltung, NoSQL.
3 Qualifikationen/Lernergebnisse

Studierende kennen nach erfolgreichem Besuch der Veranstaltung die Grundlagen des Informationsmanagements. Sie verstehen Techniken zum Aufbau von Informationsmanagementsystemen und können diese Modelle, Algorithmen und Sprachen anwenden, um selbständig Informationsmanagementsysteme zu benutzen bzw. (Teile davon) zu erstellen. Sie können die Qualität der Systeme in verschiedenen Gütemaßen bewerten.

4 Voraussetzung für die Teilnahme

Empfohlen: Erfolgreicher Besuch der Vorlesungen „Funktionale und Objektorientierte Programmierkonzepte“ und „Algorithmen und Datenstrukturen“ bzw. entsprechende Kenntnisse aus anderen Studiengängen

5 Prüfungsform

Fachprüfung schriftlich 90 min.

6 Voraussetzung für die Vergabe von Kreditpunkten

Bestehen der Modulabschlussprüfung (100%)

7 Benotung

Standard

In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

8 Verwendbarkeit des Moduls

- B.Sc. Informatik
- B.Sc. Wirtschaftsinformatik
- B.Sc. Psychologie in IT
- Joint B.A. Informatik
- B.Sc. Sportwissenschaft und Informatik
- M.Sc. Sportwissenschaft und Informatik
- LaG Informatik

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

9 Literatur

Wird jeweils aktuell bekanntgegeben, Beispiele sind:
- Haerder, Rahm, "Datenbanksysteme - Konzepte und Techniken der Implementierung", Springer 1999

10 Kommentar
2. Fachspezifischer Wahlpflichtbereich

Modulbeschreibung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Digitaltechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Nr.</td>
<td>20-00-0900</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>150 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>105 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Studiendekan/Studiendekanin</td>
</tr>
<tr>
<td>Kurse des Moduls</td>
<td></td>
</tr>
<tr>
<td>Kurs Nr.</td>
<td>Kursname</td>
</tr>
<tr>
<td>20-00-0900-iv</td>
<td>Digitaltechnik</td>
</tr>
</tbody>
</table>

1. Lerninhalt
- Digitaltechnik: digitale Abstraktion und ihre technische Umsetzung, Zahlensysteme, Logikgatter, MOSFET Transistoren und CMOS Gatter, Leistungsaufnahme
- Kombinatorische Schaltungen: Boole'sche Gleichungen und Algebra, Abbildung auf Gatter, mehrstufige Schaltungen, vierwertige Logik (0,1,X,Z), Minimierung von Ausdrücken, kombinatorische Grundelemente, Zeitverhalten
- Sequentielle Schaltungen: Latches, Flip-Flops, Entwurf synchroner Schaltungen, endliche Automaten, Zeitverhalten, Parallelität
- Hardware-Beschreibungssprachen: Modellierung kombinatorischer und sequentieller Schaltungen, Strukturbeschreibungen, Modellierung endlicher Automaten, Datentypen, parametrierte Module, Testrahmen
- Grundelemente digitaler Schaltungen: arithmetische Schaltungen, Fest-/Gleitkommandarstellung, sequentielle Grundelemente, Speicherfelder, Logikfelder

2. Qualifikationsziele/Lernergebnisse
Studierende verstehen nach erfolgreichem Besuch der Veranstaltung die Konzepte und Grundelemente der digitalen Logik sowie ihre technologische Realisierung. Sie können diese Kenntnisse selbständig anwenden, um zielgerichtet kombinatorische und sequentielle Schaltungen zu konstruieren und in einer Hardware-Beschreibungssprache zu implementieren. Sie können digitale Schaltungen bezüglich funktionaler und nicht-funktionaler Eigenschaften analysieren.

4. Voraussetzung für die Teilnahme
| 5 | **Prüfungsform** |
| | Fachprüfung schriftlich 90 min. |
| | Studienleistung schriftlich/mündlich |
| | Das erfolgreiche Bestehen der Studienleistung ist Zulassungsvoraussetzung zur Fachprüfung. |
| | Studienleistungen können erworben werden durch Übungsaufgaben, Praktikumsaufgaben, Vorträge, oder ähnlichen zu mehreren Gelegenheiten absolvierbaren Leistungüberprüfungen. Für eine Zulassung sollten nicht mehr als 50% der in all diesen Bereichen erzielbaren Leistungen erforderlich sein. |
| 6 | **Voraussetzung für die Vergabe von Kreditpunkten** |
| | Bestehen der Modulabschlussprüfung (100%) |
| 7 | **BENOTUNG** |
| | Standard |
| 8 | **Verwendbarkeit des Moduls** |
| | B.Sc. Informatik |
| | B.Sc. Informationssystemtechnik |
| | LaG Informatik |
| | Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden. |
| 9 | **Literatur** |
| | Literaturempfehlungen werden kontinuierlich aktualisiert, ein Beispiel für die verwendete Literatur könnte sein |
| | Harris/Harris: Digital Design and Computer Architecture |
| 10 | **Kommentar** |
Modulbeschreibung

Modulname
Rechnerorganisation

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0902</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Sommersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Studiendekan/Studiendekanin

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0902-iv</td>
<td>Rechnerorganisation</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalten
- Architektur von Mikroprozessoren: Programmierung in Assembler- und Maschinensprache, Adressierungsarten, Werkzeugflüsse, Laufzeitumgebung
- Mikroarchitektur: Befehlsatz und architektureller Zustand, Leistungsbewertung, Mikroarchitekturen mit Eintakt-/Mehrtakt-/Pipeline-Ausführung, Ausnahmebehandlung, fortgeschrittene Mikroarchitekturen
- Speicher und Ein-/Ausgabesysteme: Leistungsbewertung, Caches, virtueller Speicher, Ein-/Ausgabetechniken, Standardschnittstellen

Qualifikationsziele/Lernergebnisse

Voraussetzung für die Teilnahme
Empfohlen: Besuch der Vorlesung “Digitaltechnik” bzw. entsprechende Kenntnisse aus anderen Studiengängen
<table>
<thead>
<tr>
<th>5</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachprüfung schriftlich 90 min.</td>
<td></td>
</tr>
<tr>
<td>Studienleistung schriftlich/übersetzt</td>
<td></td>
</tr>
<tr>
<td>Das erfolgreiche Bestehen der Studienleistung ist Zulassungsvoraussetzung zur Fachprüfung.</td>
<td></td>
</tr>
<tr>
<td>Studienleistungen können erworben werden durch Übungsaufgaben, Praktikumsaufgaben, Vorträge, oder ähnlichen zu mehreren Gelegenheiten absolvierten Leistungsnachprüfungen. Für eine Zulassung sollten nicht mehr als 50% der in all diesen Bereichen erzielbaren Leistungen erforderlich sein.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Voraussetzung für die Vergabe von Kreditpunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung (100%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Informatik</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Informationssystemtechnik</td>
<td></td>
</tr>
<tr>
<td>LaG Informatik</td>
<td></td>
</tr>
<tr>
<td>Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literaturempfehlungen werden kontinuierlich aktualisiert, ein Beispiel für verwendete Literatur könnte sein:</td>
<td></td>
</tr>
<tr>
<td>Harris/Harris: Digital Design and Computer Architecture</td>
<td></td>
</tr>
</tbody>
</table>

| 10 | **Kommentar** |
Modulbeschreibung

Modulname
Computersystemsicherheit

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbstdauer</th>
<th>Modulzeitraum</th>
<th>Angebotszeitraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0018</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Studiendekan/Studiendekanin

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0018-iv</td>
<td>Computersystemsicherheit</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalt

Teil I: Kryptographie
- Mathematische Grundlagen der Kryptographie
- Schutzziele: Vertraulichkeit, Integrität, Authentizität
- Symmetrische und Asymmetrische Kryptographie
- Hash-Funktionen und Digitale Signaturen
- Protokolle zum Schlüsseltausch

Teil II: IT-Sicherheit und Zuverlässigkeit
- Grundlegende Konzepte der IT-Sicherheit
- Authentifizierung und Biometrie
- Access Control Modelle und Mechanismen
- Grundkonzepte der Netzwerksicherheit
- Grundkonzepte der Software-Sicherheit
- Zuverlässige Systeme: Fehlertoleranz, Redundanz, Verfügbarkeit

Qualifikationsziele/Lernergebnisse

Studierende kennen nach erfolgreichem Besuch der Veranstaltung die wichtigsten Konzepte, Methoden und Modelle im Bereich der Kryptographie und der IT-Sicherheit. Sie verstehen die wichtigsten Methoden, um Software und Hardwaresysteme gegen Angriffe abzusichern und können diese auf konkrete Szenarien anwenden.

Voraussetzung für die Teilnahme

Prüfungsform
Fachprüfung schriftlich 90 min.

Voraussetzung für die Vergabe von Kreditpunkten

Bestehen der Modulabschlussprüfung (100%)
<table>
<thead>
<tr>
<th>7</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
</tr>
</tbody>
</table>

In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Wirtschaftsinformatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Psychologie in IT</td>
</tr>
<tr>
<td></td>
<td>Joint B.A. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Informationssystemtechnik</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
</tbody>
</table>

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

<table>
<thead>
<tr>
<th>9</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- J. Buchmann, Einführung in die Kryptographie, Springer-Verlag, 2010</td>
</tr>
<tr>
<td></td>
<td>- C. Eckert, IT-Sicherheit, Oldenbourg Verlag, 2013</td>
</tr>
<tr>
<td></td>
<td>- M. Bishop, Computer Security: Art and Science, Addison Wesley, 2004</td>
</tr>
</tbody>
</table>

| 10 | Kommentar |
Modulbeschreibung

Modulname
Einführung in den Compilerbau

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0904</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Studiendekan/Studiendekanin

<table>
<thead>
<tr>
<th>1</th>
<th>Kurse des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kurs Nr.</td>
</tr>
<tr>
<td>20-00-0904-iv</td>
<td>Einführung in den Compilerbau</td>
</tr>
</tbody>
</table>

Lerninhalt
- Aufbau von Compilern
- Kontextfreie Grammatiken zur Beschreibungen der Syntax von Programmiersprachen
- Lexing- und Parsingverfahren
- Zwischendarstellungen
- Semantische Analyse
- Laufzeitorganisation
- Code-Erzeugung
- Software-Werkzeuge für den Compilerbau
- Implementierungstechniken für Compiler

Qualifikationsziele / Lernergebnisse

Voraussetzung für die Teilnahme

Prüfungsform
Sonderform

Die Studienleistung kann erbracht werden durch die erfolgreiche Bearbeitung von Übungsaufgaben sowie den erfolgreichen Diskussion in Kolloquien. Für ein Bestehen sind dabei mindestens ausreichende Leistungen in jedem dieser Teilbereiche erforderlich.
| 6 | **Voraussetzung für die Vergabe von Kreditpunkten**
Bestehen der Modulabschlussprüfung (100%) |
|---|---|
| 7 | **Bewertung**
Standard |
| 8 | **Verwendbarkeit des Moduls**
B.Sc. Informatik
B.Sc. Informationssystemtechnik
LaG Informatik
Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden. |
| 9 | **Literatur**
Literaturempfehlungen werden kontinuierlich aktualisiert, ein Beispiel für verwendete Literatur könnte sein:
Watt/Brown: Programming Language Processors in Java |
| 10 | **Kommentar** |
Modulbeschreibung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Architekturen und Entwurf von Rechnersystemen</th>
</tr>
</thead>
</table>

Modul Nr. 20-00-0012

<table>
<thead>
<tr>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Studiendekan/Studiendekanin

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0012-iv</td>
<td>Architekturen und Entwurf von Rechnersystemen</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalt
- Technologische Grundlagen und Trends der Mikroelektronik
- Entwurfsflüsse für mikroelektronische Systeme
- Beschreibung von Hardware-Systemen
- Charakteristika von Rechnersystemen
- Architekturen für parallele Ausführung
- Speichersysteme
- Heterogene Systems-on-Chip
- On-Chip und Off-Chip Kommunikationsstrukturen
- Aufbau eingebetteter Systeme, z.B. im Umfeld von Cyber-Physical Systems

Qualifikationsziele/Lernergebnisse
Studierende kennen nach erfolgreichem Besuch der Veranstaltung funktionale und nichtfunktionale Anforderungen an heterogene diskrete und integrierte Rechnersysteme. Sie verstehen Techniken zum Aufbau solcher Systeme und können Entwurfsverfahren und -werkzeuge anwenden, um selbständig mit Hilfe der Techniken Rechner(teil)systeme zu konstruieren, die gegebene Anforderungen erfüllen. Sie können die Qualität der Systeme in verschiedenen Gütemaßen bewerten.

Voraussetzung für die Teilnahme
Empfohlen: Erfolgreicher Besuch der Vorlesungen „Digitaltechnik“ und „Rechnerorganisation“ bzw. entsprechende Kenntnisse aus anderen Studiengängen

Prüfungsform
Fachprüfung schriftlich 90 min.

Voraussetzung für die Vergabe von Kreditpunkten
Bestehen der Modulabschlussprüfung (100%)

Benotung
Standard
<table>
<thead>
<tr>
<th>8</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Wirtschaftsinformatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Psychologie in IT</td>
</tr>
<tr>
<td></td>
<td>Joint B.A. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Informationssystemtechnik</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
<tr>
<td></td>
<td>Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Literaturempfehlungen werden kontinuierlich aktualisiert, Beispiele für verwendete Literatur könnten sein:</td>
</tr>
<tr>
<td></td>
<td>Nikhil/Czech: Bluespec by Example</td>
</tr>
<tr>
<td></td>
<td>Arvind/Nikhil/Emer/Vijayaraghavan: Computer Architecture: A Constructive Approach</td>
</tr>
<tr>
<td></td>
<td>Hennessy/Patterson: Computer Architecture – A Quantitative Approach</td>
</tr>
<tr>
<td></td>
<td>Crockett/Elliott/Enderwitz/Stewart: The Zynq Book</td>
</tr>
<tr>
<td></td>
<td>Flynn/Luk: Computer System Design</td>
</tr>
<tr>
<td></td>
<td>Sass/Schmidt: Embedded Systems Design</td>
</tr>
</tbody>
</table>

| 10 | **Kommentar** |
Modulbeschreibung

Modulname
Systemnahe und Parallele Programmierung

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0905</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Studiendekan/Studiendekanin

1 Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0905-iv</td>
<td>Systemnahe und Parallele Programmierung</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

2 Lerninhalt
- Programmiersprachen für systemnahe Programmierung
- Grundlagen paralleler Systeme
- parallele Architekturen, Multi- und Many-Core Systeme, Rechnernetze
- Programmierparadigmen und Modelle für paralleles Rechnen
- Parallele Algorithmen
- Vertiefung der gelernten Inhalte in Praktika mit signifikantem Umfang

3 Qualifikationsziele/Lernergebnisse

4 Voraussetzung für die Teilnahme

5 Prüfungsform
Sonderform

Die Studienleistung kann erbracht werden durch die erfolgreiche Bearbeitung von Übungslättern und praktischen Programmieraufgaben sowie deren erfolgreicher Diskussion in Kolloquien. Für ein Bestehen sind dabei mindestens ausreichende Leistungen in jedem dieser Teilbereiche erforderlich.

6 Voraussetzung für die Vergabe von Kreditpunkten
Bestehen der Modulabschlussprüfung (100%)

7 Benotung
Standard
8 | **Verwendbarkeit des Moduls**
B.Sc. Informatik
B.Sc. Informationssystemtechnik
LaG Informatik

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

9 | **Literatur**
wird in der Veranstaltung bekanntgegeben

10 | **Kommentar**
Modulbeschreibung

Modulname
Modellierung, Spezifikation und Semantik

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Modulsdauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0013</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Studiendekan/Studiendekanin

1. **Kurse des Moduls**

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0013-iv</td>
<td>Modellierung, Spezifikation und Semantik</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

2. **Lerninhalt**
- Einführung in die Modellierung mit logischen und algebraischen Konzepten
- Interpretation und Adäquatheit formaler Modelle
- strukturiertes Vorgehen bei der Modellierung und Umgang mit Entwurfsentscheidungen
- Abstraktion, Verfeinerung, Komposition und Zerlegen von Modellen
- Syntax und operationale Semantik von Programmiersprachen
- elementare Beweistechniken und deren Verwendung
- Einführung in Spezifikationssprachen
- Syntax und denotationale Semantik von Spezifikationssprachen
- Modellierung von Kommunikation und Koordination in nebenläufigen Systemen
- Klassifikation von Systemeigenschaften

3. **Qualifikationsziele/Lernergebnisse**

4. **Voraussetzung für die Teilnahme**
Empfohlen: Fähigkeit mit formalen Sprachen und Kalkülen umzugehen und grundlegende Logikkenntnisse, z.B. durch Besuch der Pflichtveranstaltungen “Automaten, formale Sprachen und Entscheidbarkeit” und “Aussagen- und Prädikatenlogik”
<table>
<thead>
<tr>
<th>5</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachprüfung schriftlich 90 min.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Voraussetzung für die Vergabe von Kreditpunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Modulabschlussprüfung (100%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Informatik</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Wirtschaftsinformatik</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Psychologie in IT</td>
<td></td>
</tr>
<tr>
<td>Joint B.A. Informatik</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Sportwissenschaft und Informatik</td>
<td></td>
</tr>
<tr>
<td>LaG Informatik</td>
<td></td>
</tr>
</tbody>
</table>

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

<table>
<thead>
<tr>
<th>9</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>U. Kastens, H. Kleine Büning: Modellierung - Grundlagen und formale Methoden, Hanser</td>
<td></td>
</tr>
<tr>
<td>G. Winskel: The Formal Semantics of Programming Languages, MIT Press</td>
<td></td>
</tr>
</tbody>
</table>

Die Literaturempfehlungen werden kontinuierlich aktualisiert.

| 10 | Kommentar |
Modulbeschreibung

Modulname

Computational Engineering und Robotik

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0011</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Sommersemester</td>
</tr>
</tbody>
</table>

Sprache

Deutsch

Modulverantwortliche Person

Studiendekan/Studiendekarin

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0011-iv</td>
<td>Computational Engineering und Robotik</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalt

- Grundlagen der Modellierung und Simulation
- Problemspezifikation und Systembeschreibung im Computational Engineering
- Modellbildung am Beispiel mechanischer Systeme
- Modellanalyse am Beispiel mechanischer Systeme
- Implementierung von Simulationen an Beispielen aus der Robotik und anderer Bereiche
- Interpretation und Validierung anhand von Messdaten
- Anwendungen in der Simulation und Steuerung von Robotern sowie der physikalisch basierten Animation und Computerspielen

Qualifikationsziele/Lernergebnisse

Studierende kennen nach erfolgreichem Besuch der Veranstaltung die grundlegenden Schritte zur Entwicklung von ersten Modellen und Simulationen und sind in der Lage erste Simulationsstudien in der Robotik durchzuführen. Sie kennen die wesentlichen Schritte zum Aufbau solcher Simulationssysteme (Problemspezifikation, Modellbildung, Modellanalyse, Implementierung und Validierung) und können mit diesen erste Simulationen konstruieren, die gegebene Anforderungen erfüllen.

Voraussetzung für die Teilnahme

5

Prüfungsform

Fachprüfung schriftlich 90 min.

Voraussetzung für die Vergabe von Kreditpunkten

Bestehen der Modulabschlussprüfung (100%)

Benotung

Standard

In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.
8 Verwendbarkeit des Moduls
B.Sc. Informatik
B.Sc. Wirtschaftsinformatik
B.Sc. Computational Engineering
B.Sc. Psychologie in IT
Joint B.A. Informatik
B.Sc. Sportwissenschaft und Informatik
M.Sc. Sportwissenschaft und Informatik
B.Sc. Informationssystemtechnik
LaG Informatik

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

9 Literatur
Literatur zu einzelnen Kapiteln der Lehrveranstaltung:
F. Föllinger: Einführung in die Zustandsbeschreibung dynamischer Systeme (Oldenbourg, 1982)

10 Kommentar
Modulbeschreibung

Modulname
Computer Netzwerke und verteilte Systeme

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0016</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Sommersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0016-iv</td>
<td>Computer Netzwerke und verteilte Systeme</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalt
Übersichtswissen zu Net-Centric Computing (NCC), einem grundlegenden Aspekt der modernen Informatik; tiefes Verständnis und Kenntnis fundamentaler Konzepte im Teilbereich Rechnernetze; Kenntnis grundlegender Methoden zur Modellierung, Planung und Bewertung von Net-Centric Systems

- Grundbegriffe: Dienst, Protokoll, Verbindung, Schichtenmodell
- Wichtigste Protokollmechanismen zu Media Access, Routing, Broadcast/Multicast
- Multimedia Data Handling
- Eigenschaften kontinuierlicher Datenströme und deren Verarbeitung
- Dienstgüte: Definition und zentrale Mechanismen
- Multimedia---Synchronisation: Grundlagen
- Kompression: Verfahren; Grundlagen zu Standards (Verweis auf Weiterführendes)

Qualifikationsziele/Lernergebnisse

- Überblickswissen über relevante Gebiete und wesentliche Fragestellungen des Net-Centric Computing (NCC);
- Reproduzierbares und tiefes Verständnis elementarer Protokolle und Verfahren und deren Einsatz im Internet;
- Anwendbares Methodenwissen zu weit verbreiteten Bestandteilen der Modellierung und des "Engineering" von NCC-Systemen;

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzung für die Teilnahme</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fachprüfung schriftlich 90 min.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzung für die Vergabe von Kreditpunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
</tr>
</tbody>
</table>

In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Wirtschaftsinformatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Psychologie in IT</td>
</tr>
<tr>
<td></td>
<td>Joint B.A. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Informationssystemtechnik</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
</tbody>
</table>

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

<table>
<thead>
<tr>
<th></th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hauptliteratur:</td>
</tr>
<tr>
<td></td>
<td>● A. Tanenbaum, D. Wetherall: Computernetzwerke, 5te Aufl., Pearson Studium 2012</td>
</tr>
<tr>
<td></td>
<td>● J. Kurose, K. Ross: Computernetzwerke; Pearson Studium 2012</td>
</tr>
<tr>
<td></td>
<td>● (ebenfalls auch englisch bei Prentice Hall erhältlich)</td>
</tr>
<tr>
<td></td>
<td>● Ausgewählte Kapitel aus folgenden Büchern:</td>
</tr>
<tr>
<td></td>
<td>● G. Coulouris, J. Dollimore, T. Kindberg: Distributed Systems – Concept and Design, Pearson Studium</td>
</tr>
<tr>
<td></td>
<td>● G. Krüger, D. Reschke: „Lehr- und Übungsbuch Telematik“</td>
</tr>
<tr>
<td></td>
<td>● L. Kleinrock: Queueing Systems, vol. 1 (Wiley)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modulbeschreibung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Formale Methoden im Softwareentwurf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Nr.</td>
<td>20-00-0901</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>150 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>105 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Studiendekan/Studiendekanin</td>
</tr>
</tbody>
</table>

1. Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0901-iv</td>
<td>Formale Methoden im Softwareentwurf</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Lerninhalt

- Modellierung nebenläufiger Software mit der Sprache ProMeLa
- Formalisierung von Sicherheits- und Lebendigkeitseigenschaften mit temporaler Aussagenlogik
- Theoretische Grundlagen von Modellprüfungsverfahren
- Verifikation von ProMeLa Programmen mittels des Modellprüfers SPIN
- Syntax, Semantik und Sequenzenkalkül für typisierte Logik erster Stufe
- Grundlagen der kontraktbasierten Softwarespezifikationssprache JML
- Dynamische Logik als eine Programmlogik erster Stufe
- Formale Programmverifikation durch symbolische Ausführung und Invariantenschließen
- Werkzeugunterstützte Verifikation von Java-Programmen mit der KeY System

3. Qualifikationsziele/Lernergebnisse

Nach erfolgreichem Besuch der Veranstaltung haben die Studierenden praktisch anwendbare Grundkenntnisse in den beiden wichtigsten Verfahren zur formalen Spezifikation und Verifikation von Software:

1. Modellprüfung gegen in temporaler Aussagenlogik spezifizierte Eigenschaften
2. Deduktive Verifikation von Methodenkontrakten

4. Voraussetzung für die Teilnahme

5. Prüfungsform

Fachprüfung schriftlich 90 min.
| 6 | **Voraussetzung für die Vergabe von Kreditpunkten**
Bestehen der Modulabschlussprüfung (100%) |
|---|---|
| 7 | **Bewertung**
Standard
In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die
lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen
Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann. |
| 8 | **Verwendbarkeit des Moduls**
B.Sc. Informatik
LaG Informatik
Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet
werden. |
| 9 | **Literatur**
Für den ersten Teil des Kurses:
● Ben-Ari: Principles of the SPIN Model Checker, Springer
● Holzmann: The SPIN Model Checker, Addison-Wesley
Für den zweiten Teil des Kurses:
● Beckert et al.: Verification of Object-Oriented Software, Springer
Die Literaturempfehlungen werden kontinuierlich aktualisiert |
| 10 | **Kommentar** |
Modulbeschreibung

Modulname

Betriebssysteme

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0903</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>1 Semester</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Sprache

Deutsch

Modulverantwortliche Person

Studiendekan/Studiendekanin

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0903-iv</td>
<td>Betriebssysteme</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalte

- Einführung in Betriebssysteme (BS) - Notwendigkeit, Design
- Prozesse und Threads - BS Datenstrukturen, Abstraktionen, Kernel/User mode, context switches, Interrupts
- Interprozeß-Kommunikation - IPC, RPC, Schnittstellen, Hierarchien, Messaging-Semantiken
- Koordination: Deadlocks - Critical sections, Deadlock-Charakterisierung, Entdeckung, Recovery und Vermeidung.
- Scheduling/Ressourcen-Management - Prozess-Reihenfolgen, unterbrechendes und unterbrechungsfreies Scheduling, verschiedene Scheduling-Konzepte und -Algorithmen, Implementierungen in BS
- Nebenläufigkeit: Races, Mutual Exclusions - Critical sections, races, spin locks, Synchronisation
- Semaphore - Semaphore, Monitore
- Speicherverwaltung - BS-Datenstrukturen, Management- und Austausch-Ansätze, virtueller Speicher, paging, caching, segmentation
- I/O - Geräte-Management, Treiber, Interrupt-Behandlung, DMA
- Dateisysteme - Anforderungen, Design, Implementierungen, Datenstrukturen, Verzeichnisse, virtuelle Dateisysteme
- Fehlertoleranz und Stabilität - Fehlertypen, zuverlässige Nachrichten, BS Zuverlässigkeit und Verfügbarkeit, Sicherheits-Aspekte
- Eingebettete & Echtzeit BS - Speicher/Festplatten/Performanz-Management, Fehlertoleranz, Echtzeit-Aspekte
- Verteilte BS - verteilte Berechnung und Kommunikation, Abstraktionen, Synchronisation, Koordination, Konsistenz
- Virtuelle Maschinen (VM) - Grundlagen und Typisierung von VMs und Hypervisoren
<table>
<thead>
<tr>
<th></th>
<th>Qualifikationsziele/Lernergebnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzung für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Empfohlen: “Algorithmen und Datenstrukturen”, “Funktionale und objektorientierte Programmierung”, “Rechnerorganisation”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Fachprüfung schriftlich 90 min.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzung für die Vergabe von Kreditpunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Bestehen der Modulabschlussprüfung (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>B.Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Informationssystemtechnik</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
<tr>
<td></td>
<td>Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Literatur</th>
</tr>
</thead>
</table>

| | Kommentar |
Modulbeschreibung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Visual Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Nr.</td>
<td>20-00-0014</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>150 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>105 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>Sommersemester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Studiendekan/Studiendekanin

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0014-iv</td>
<td>Visual Computing</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalt
- Grundlagen der Wahrnehmung
- Grundlagen der Fouriertransformation
- Bilder, Bildfilterung, -kompression & -verarbeitung
- Grundlagen der Objekterkennung
- Geometrische Transformationen
- Grundlagen der 3D-Rekonstruktion
- Oberflächen- und Szenenrepräsentationen
- Renderingverfahren
- Farbe: Wahrnehmung, Räume & Modelle
- Grundlagen der Visualisierung

Qualifikationsziele/Lernergebnisse
Nach erfolgreichem Besuch der Veranstaltung beschreiben Studierende die Grundkonzepte sowie grundlegende Modelle und Methoden des Visual Computings. Sie erklären wichtige Verfahren zur Bildsynthese (Computergraphik & Visualisierung) sowie zur Bildanalyse (Computer Vision) und können damit einfache Bildsynthese- und -analyseaufgaben lösen.

Voraussetzung für die Teilnahme
Empfohlen: Der vorige (ggf. parallele) Besuch der Veranstaltungen “Mathematik I/II/III”.

Prüfungsform
Fachprüfung schriftlich 90 min.

Voraussetzung für die Vergabe von Kreditpunkten
Bestehen der Modulabschlussprüfung (100%)

Benotung
Standard

In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.
<table>
<thead>
<tr>
<th>8</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Wirtschaftsinformatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Psychologie in IT</td>
</tr>
<tr>
<td></td>
<td>Joint B.A. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Computational Engineering</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Informationssystemtechnik</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
</tbody>
</table>

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

<table>
<thead>
<tr>
<th>9</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Literaturempfehlungen werden regelmäßig aktualisiert und beinhalten beispielsweise:</td>
</tr>
</tbody>
</table>

| 10 | Kommentar |
Modulbeschreibung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Seminar aus Data Mining und Maschinellem Lernen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Nr.</td>
<td>20-00-0102</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>3 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>90 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>60 h</td>
</tr>
<tr>
<td>Moduldaurerer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>i.d.R. jedes Wintersemester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und English</td>
</tr>
</tbody>
</table>

| Modulverantwortliche Person | Koordinatoren/Koordinatorinnen Web, Wissens- und Informationsverarbeitung |

<table>
<thead>
<tr>
<th>Kurse des Moduls</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurs Nr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-00-0102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kursname</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar aus Data Mining und Maschinellem Lernen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand (CP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lerninhalt</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Qualifikationsziele/Lernergebnisse</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach diesem Seminar sollten Studierende in der Lage sein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• einen unbekannten Text im Bereich des maschinellen Lernens selbständig aufzuarbeiten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• eine Präsentation für ein Fachpublikum in diesem Gebiet zu entwickeln</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• an einer Fachdiskussion über ein Thema aus dem Gebiet des maschinellen Lernens sinnvoll teilzunehmen</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzung für die Teilnahme</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlen: Basic knowledge in Machine Learning in Data Mining</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prüfungsform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Studienleistung schriftlich/mündlich (Präsentation, Dokumentation, technische Umsetzung oder vergleichbare Leistungen)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzung für die Vergabe von Kreditpunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Bestehen der Modulabschlussprüfung (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Standard</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>B.Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Informatik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Autonome Systeme</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Visual Computing</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Internet- und Web-basierte Systeme</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Wirtschaftsinformatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Psychologie in IT</td>
</tr>
<tr>
<td></td>
<td>Joint B.A. Informatik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
</tbody>
</table>

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

<table>
<thead>
<tr>
<th></th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Modulbeschreibung

Modulname
Seminar Telekooperation

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0130-se</td>
<td>3 CP</td>
<td>90 h</td>
<td>60 h</td>
<td>1 Semester</td>
<td>unregelmäßig</td>
</tr>
</tbody>
</table>

Sprache
Deutsch und Englisch

Modulverantwortliche Person
Koordinatoren/Koordinatorinnen Netze und verteilte Systeme

1 Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0130-se</td>
<td>Seminar Telekooperation</td>
<td>3</td>
<td>Seminar</td>
<td>2</td>
</tr>
</tbody>
</table>

2 Lerninhalt
Das Seminar Telekooperation setzt sich mit der strukturierten Arbeit an wissenschaftlichen Veröffentlichungen auseinander.

3 Qualifikationsziele Lernergebnisse
Nach dem Besuch des Seminars Telekooperation

- sind Studierende mit dem Forschungsgebiet ihres Seminarthemas vertraut
- können sich Studierende kritische mit wissenschaftlicher Literatur auseinandersetzen
- eine solchen Auseinandersetzung und zugehöriger Schlussfolgerung in schriftlicher und mündlicher Form dokumentieren und vortragen

4 Voraussetzung für die Teilnahme
Empfohlen: Allgemeine Informatik -- Kenntnisse aus dem Grundstudium

5 Prüfungsform
Studienleistung schriftlich/mündlich (Präsentation, Dokumentation, technische Umsetzung oder vergleichbare Leistungen)

6 Voraussetzung für die Vergabe von Kreditpunkten
Bestehen der Modulabschlussprüfung (100%)

7 Benotung
Standard
Verwendbarkeit des Moduls

- B.Sc. Informatik
- M.Sc. Informatik
- M.Sc. Internet- und Web-basierte Systeme
- M.Sc. Distributed Software Systems
- M.Sc. Wirtschaftsinformatik
- B.Sc. Psychologie in IT
- Joint B.A. Informatik
- B.Sc. Sportwissenschaft und Informatik
- M.Sc. Sportwissenschaft und Informatik
- LaG Informatik

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

Literatur

Kommentar
Modulbeschreibung

Modulname

IT Sicherheit, Benutzeroberkeit, und Gesellschaftliche Aspekte

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0665</td>
<td>4 CP</td>
<td>120 h</td>
<td>75 h</td>
<td>1 Semester</td>
<td>unregelmäßig</td>
</tr>
</tbody>
</table>

Kurs des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0665-se</td>
<td>IT Sicherheit, Benutzbarkeit, und Gesellschaftliche Aspekte</td>
<td>4</td>
<td>Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalt

- Einarbeitung in die Thematik und die Fachliteratur des Themas (unter Anleitung eines Betreuers)
- Vorbereitung der Struktur einer wissenschaftlichen Ausarbeitung zu dem spezifischen Thema
- Peer Review der Strukturen
- Präsentation des Themas bzw. der gewonnenen Erkenntnisse
- Abschluss der wissenschaftlichen Ausarbeitung

Qualifikationsziele / Lernergebnisse

4	Voraussetzung für die Teilnahme
	Empfohlen: Computersystemsicherheit, HCI
5	Prüfungsform
	Studienleistung schriftlich/mündlich (Präsentation, Dokumentation, technische Umsetzung oder vergleichbare Leistungen)
6	Voraussetzung für die Vergabe von Kreditpunkten
	Bestehen der Modulabschlussprüfung (100%)
7	Benotung
	Standard
8	Verwendbarkeit des Moduls
	B.Sc. Informatik
	M.Sc. Informatik
	M.Sc. IT Sicherheit
	M.Sc. Wirtschaftsinformatik
	B.Sc. Psychologie in IT
	Joint B.A. Informatik
	B.Sc. Sportwissenschaft und Informatik
	LaG Informatik
	Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.
9	Literatur
	Wird in der Veranstaltung bekannt gegeben
10	Kommentar
Modulbeschreibung

Modulname
Bachelor-Praktikum

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0906</td>
<td>9 CP</td>
<td>270 h</td>
<td>180 h</td>
<td>1 Semester</td>
<td>jedes Semester?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch</td>
<td>Studiendekan/Studiendekanin</td>
</tr>
</tbody>
</table>

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0906-iv</td>
<td>Bachelor-Praktikum</td>
<td>9</td>
<td>Praktikum</td>
<td>6</td>
</tr>
</tbody>
</table>

Lerninhalt

Schwerpunkte des Praktikums sind:
- Planung und Durchführung eines Softwareentwicklungsprojektes
- Anwendung von Softwareentwicklungsprozessen
- Ermittlung und Priorisierung von Anforderungen
- Durchführung systematischer Qualitätssicherung
- Präsentationstechnik
- Teamarbeit

Qualifikationsziele/Lernergebnisse

Nach erfolgreichem Abschluss des Bachelor-Praktikums sind die Studierenden in der Lage, folgende Aufgaben lösen zu können:

- Umsetzung kleinerer Programmierprojekte über einen längeren Zeitraum (~ 6 Monate) in einem kleinen Team (4 bis 5 Personen);
- Systematische Organisation und Planung von Softwareprojekten;
- Ermittlung und Dokumentation von Projektanforderungen;
- Systematische Durchführung grundlegender, dem Projekt angemessener, Qualitätssicherung;
| 4 | Voraussetzung für die Teilnahme |
| | Empfohlen: Erfolgreicher Abschluss der Veranstaltungen: |
| | ● Funktionale und Objektorientierte Programmierkonzepte |
| | ● Software Engineering |

| 5 | Prüfungsform |
| | Studienleistung schriftlich/mündlich (Präsentation, Dokumentation, technische Umsetzung oder vergleichbare Leistungen) |

| 6 | Voraussetzung für die Vergabe von Kreditpunkten |
| | Bestehen der Modulabschlussprüfung (100%) |

| 7 | Benotung |
| | Standard |

8	Verwendbarkeit des Moduls
	B.Sc. Informatik
	LaG Informatik

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

9	Literatur
	Allgemein:
	● Lehrbuch der Softwaretechnik: Softwaremanagement; H. Balzert; Springer
	● Design Patterns - Elements of Reusable Object-Oriented Software; E. Gamma, R. Helm, R. Johnson, J. Vlissides; Prentice Hall
	● Software Qualität - Testen, Analysieren und Verifizieren von Software; P. Liggesmeyer; Springer
	● Writing Effective Use Cases; A. Cockburn; Pearson
	● Clean Code: A Handbook of Agile Software Craftsmanship; R. C. Martin; Prentice Hall

Weiterhin ist je nach bearbeiteter Aufgabenstellung weitere Literatur notwendig.

| 10 | Kommentar |
Modulbeschreibung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Praktikum Visual Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Nr.</td>
<td>20-00-0418</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>6 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>180 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>120 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>i.d.R. jedes Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch und Englisch</td>
</tr>
</tbody>
</table>

Modulverantwortliche Person
Koordinatoren/Koordinatorinnen Visual & Interactive Computing

<table>
<thead>
<tr>
<th>1</th>
<th>Kurse des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kurs Nr.</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>20-00-0418-pr</td>
<td>Praktikum Visual Computing</td>
</tr>
</tbody>
</table>

Lerninhalt

Qualifikationsziele/Lernergebnisse
Nach dem erfolgreichen Abschluss des Praktikums sind die Studenten dazu in der Lage, selbständig ein Problem aus dem Bereich des Visual Computings zu analysieren, zu lösen und die Ergebnisse zu bewerten.

Voraussetzung für die Teilnahme
Empfohlen:
praktische Programmierkenntnisse, z. B. in Java, C++
Grundkenntnisse oder Interesse, sich mit Fragestellungen des Visual Computing zu befassen
empfohlen wird der Besuch mindestens einer der Einführungsvorlesungen im Bereich Visual Computing

Prüfungsform
Studienleistung schriftlich/mündlich (Präsentation, Dokumentation, technische Umsetzung oder vergleichbare Leistungen)

Voraussetzung für die Vergabe von Kreditpunkten
Bestehen der Modulabschlussprüfung (100%)

Bewertung
Standard
| 8 | **Verwendbarkeit des Moduls**
| | B.Sc. Informatik
| | M.Sc. Informatik
| | M.Sc. Visual Computing
| | B.Sc. Computational Engineering
| | M.Sc. Computational Engineering
| | M.Sc. Wirtschaftsinformatik
| | B.Sc. Psychologie in IT
| | Joint B.A. Informatik
| | B.Sc. Sportwissenschaft und Informatik
| | M.Sc. Sportwissenschaft und Informatik
| | B.Sc. Informationssystemtechnik
| | LaG Informatik

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

| 9 | **Literatur**
| | wird in der Veranstaltung bekanntgegeben

| 10 | **Kommentar**

Modulbeschreibung

Modulname
Internet - Praktikum Telekooperation

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0131</td>
<td>6 CP</td>
<td>180 h</td>
<td>120 h</td>
<td>1 Semester</td>
<td>i.d.R. jedes Semester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch und Englisch

Modulverantwortliche Person
Koordinatoren/Koordinatorinnen Netze und verteilte Systeme

Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0131-pr</td>
<td>Internet - Praktikum Telekooperation</td>
<td>6</td>
<td>Praktikum</td>
<td>4</td>
</tr>
</tbody>
</table>

Lerninhalt
Das Praktikum selbst ist in drei Teile unterteilt. In jedem Teil wird es eine Vorlesung geben, um das Thema einzuführen und neue Arbeitswerkzeuge vorzustellen. Wichtige Themen sind:
● Einführung in Java Netzwerk Programmierung und HTTP
● Peer-to-peer technologies
● Web caching
● Internet Standards

Qualifikationsziele/Lernergebnisse
Studierende haben nach Besuch dieser Veranstaltung Wissen über zur Zeit aktuell aufkommende Technologien erworben. Ebenso haben Studierende diese Technologien (Bausteine der zukünftigen Generation von Internetdiensten) praktisch eingesetzt und Erfahrungen bei der Nutzung, Entwicklung und Integration dieser Technologien gesammelt.

Voraussetzung für die Teilnahme
Empfohlen: „Computer-Netzwerke und verteilte Systeme“

Prüfungsform
Studienleistung schriftlich/mündlich (Präsentation, Dokumentation, technische Umsetzung oder vergleichbare Leistungen)

Voraussetzung für die Vergabe von Kreditpunkten
Bestehen der Modulabschlussprüfung (100%)

Benotung
Standard
<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Informatik</td>
</tr>
<tr>
<td>M.Sc. Informatik</td>
</tr>
<tr>
<td>M.Sc. Internet- und Web-basierte Systeme</td>
</tr>
<tr>
<td>M.Sc. Distributed Software Systems</td>
</tr>
<tr>
<td>M.Sc. Wirtschaftsinformatik</td>
</tr>
<tr>
<td>B.Sc. Psychologie in IT</td>
</tr>
<tr>
<td>Joint B.A. Informatik</td>
</tr>
<tr>
<td>B.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td>M.Sc. Sportwissenschaft und Informatik</td>
</tr>
<tr>
<td>LaG Informatik</td>
</tr>
</tbody>
</table>

Kann im Rahmen fachübergreifender Angebote auch in anderen Studiengängen verwendet werden.

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kommentar</th>
</tr>
</thead>
</table>

3. Fachdidaktischer Pflichtbereich

Modulbeschreibung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Fachdidaktik der Informatik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Nr.</td>
<td>20-00-0687</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>150 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>105 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>In der Regel jedes Sommer-Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Jens Gallenbacher</td>
</tr>
</tbody>
</table>

1. Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0687-vl</td>
<td>Fachdidaktik der Informatik I</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

2. Lerninhalt

- Kennen und Anwenden der Konzepte des Lehrens und Lernens im Fach Informatik
- Beherrschen der Denkweisen und Methoden der Informatik und ihre Übertragung auf den Schulunterricht
- Konzeption und Gestaltung von Informatikunterricht
 Insbesondere:
 - Verschiedene Ansätze für Bildungsstandards
 - Paradigmen der informatischen Modellierung, insbesondere imperative/objektorientierte, funktionale sowie wissensbasierte Programmierparadigmen an schulpraktischen Beispielen
- Werkzeuge für die Vermittlung kennenlernen
- Genetischer Vermittlungsansatz für die Informatik

3. Qualifikationsziele/Lernergebnisse

- Die Bildungsziele des Fachs Informatik, der damit verknüpften MINT-Fächer sowie Einsatz in weiteren Fächern (z. B. im Rahmen der Informations- und Kommunikationstechnischen Grundbildung) kennenlernen, begründen und ihre Legitimation und Entwicklung im gesellschaftlichen und historischen Kontext darstellen und reflektieren
- Fachdidaktische Theorien und die fachdidaktische Forschung für Lehren und Lernen kennen und darstellen
- Schulische und außerschulische Anwendungsfelder der Informatik erfassen und kritisch analysieren
<table>
<thead>
<tr>
<th>4</th>
<th>Voraussetzung für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Prüfungsform</td>
</tr>
<tr>
<td></td>
<td>Fachprüfung mündlich 20-30 min oder schriftlich 60-120 min</td>
</tr>
<tr>
<td></td>
<td>In der Regel mündlich</td>
</tr>
<tr>
<td>6</td>
<td>Voraussetzung für die Vergabe von Kreditpunkten</td>
</tr>
<tr>
<td></td>
<td>Bestehen der Fachprüfung (100% der Note)</td>
</tr>
<tr>
<td>7</td>
<td>Benotung</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.</td>
</tr>
<tr>
<td>8</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>Bachelor of Education Informatik</td>
</tr>
<tr>
<td></td>
<td>Bachelor of Education Anteil Informatik für Andere</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
<tr>
<td>9</td>
<td>Literatur</td>
</tr>
<tr>
<td>10</td>
<td>Kommentar</td>
</tr>
<tr>
<td></td>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td></td>
<td>Funktionale und objektorientierte Programmierkonzepte</td>
</tr>
</tbody>
</table>
Modulbeschreibung

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Fachdidaktik der Informatik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Nr.</td>
<td>20-00-0688</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 CP</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>150 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>105 h</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Angebotsturnus</td>
<td>In der Regel jedes Winter-Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortliche Person</td>
<td>Jens Gallenbacher</td>
</tr>
</tbody>
</table>

1 Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0688-vl</td>
<td>Fachdidaktik der Informatik II</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

2 Lerninhalt

- Kennen und Anwenden der Konzepte des Lehrens und Lernens im Fach Informatik
- Beherrschen der Denkweisen und Methoden der Informatik und ihre Übertragung auf den Schulunterricht
- Konzeption und Gestaltung von Informatikunterricht
 - Insbesondere:
 - Die Problemlösekompetenz und ihre Vermittlung anhand von Algorithmen und Datenstrukturen
 - Datenschutz und Datensicherheit: fachwissenschaftliche sowie gesellschaftliche Analyse und Betrachtung

3 Qualifikationsziele/Lernergebnisse

- Fachdidaktische Theorien und die fachdidaktische Forschung für Lehren und Lernen kennen und darstellen
- Schulische und außerschulische Anwendungsfelder der Informatik erfassen und kritisch analysieren
- Konzepte der Medienpädagogik kennen sowie den Einsatz der Informations- und Kommunikationstechnologien, von Schulbüchern und anderen Medien in fachlichen Lehr- und Lernprozessen analysieren und begründen
- Fachdidaktische Ansätze zur Konzeption von fachlichen Unterrichtsprozessen kennen, in exemplarische Unterrichtsszenarien umsetzen und mit Methoden der empirischen Unterrichtsforschung auswerten und weiter entwickeln
- Fachspezifische Lernschwierigkeiten analysieren und exemplarisch erläutern sowie Förderungsmöglichkeiten einschätzen
<table>
<thead>
<tr>
<th>4</th>
<th>Voraussetzung für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Prüfungsform</td>
</tr>
<tr>
<td></td>
<td>Fachprüfung mündlich 20-30 min oder schriftlich 60-120 min</td>
</tr>
<tr>
<td></td>
<td>In der Regel mündlich</td>
</tr>
<tr>
<td>6</td>
<td>Voraussetzung für die Vergabe von Kreditpunkten</td>
</tr>
<tr>
<td></td>
<td>Bestehen der Fachprüfung (100% der Note)</td>
</tr>
<tr>
<td>7</td>
<td>Benotung</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.</td>
</tr>
<tr>
<td>8</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>Bachelor of Education Informatik</td>
</tr>
<tr>
<td></td>
<td>Master of Education Informatik</td>
</tr>
<tr>
<td></td>
<td>LaG Informatik</td>
</tr>
<tr>
<td>9</td>
<td>Literatur</td>
</tr>
<tr>
<td>10</td>
<td>Kommentar</td>
</tr>
<tr>
<td></td>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td></td>
<td>Fachdidaktik der Informatik 1</td>
</tr>
<tr>
<td></td>
<td>Funktionale und objektorientierte Programmierkonzepte</td>
</tr>
<tr>
<td></td>
<td>Algorithmen und Datenstrukturen</td>
</tr>
<tr>
<td></td>
<td>Automaten, formale Sprachen und Entscheidbarkeit</td>
</tr>
</tbody>
</table>
Modulbeschreibung

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0689</td>
<td>5 CP</td>
<td>150 h</td>
<td>105 h</td>
<td>Jens Gallenbacher</td>
</tr>
</tbody>
</table>

Kurs des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0689-vl</td>
<td>Fachdidaktik der Informatik III</td>
<td>5</td>
<td>integrierte Lehrveranstaltung</td>
<td>3</td>
</tr>
</tbody>
</table>

Lerninhalt
- Kenntnis und Anwendung der Konzepte des Lehrens und Lernens im Fach Informatik
- Beherrschung der Denkweisen und Methoden der Informatik und ihre Übertragung auf den Schulunterricht
- Konzeption und Gestaltung von Informatikunterricht

Insbesondere:
- Modellbildung und Problemlösen am Beispiel der Computerentwicklung
- Funktionsweise eines Computers
- Automaten
- Sichtbildung als informatisches Modellierungswerkzeug am Beispiel von Datenbanken und Netzwerktechnik

Qualifikationsziele/Lernergebnisse
- Schulische und außerschulische Anwendungsfelder der Informatik erfassen und kritisch analysieren

 - Konzepte der Medienpädagogik kennen sowie den Einsatz der Informations- und Kommunikationstechnologien, von Schulbüchern und anderen Medien in fachlichen Lehr- und Lernprozessen analysieren und begründen

 - Fachdidaktische Ansätze zur Konzeption von fachlichen Unterrichtsprozessen kennen, in exemplarische Unterrichtsszenarien umsetzen und mit Methoden der empirischen Unterrichtsforschung auswerten und weiter entwickeln

 - Fachspezifische Lernschwierigkeiten analysieren und exemplarisch erläutern sowie Förderungsmöglichkeiten einschätzen

Voraussetzung für die Teilnahme
<table>
<thead>
<tr>
<th>5</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachprüfung mündlich 20-30 min oder schriftlich 60-120 min</td>
<td></td>
</tr>
<tr>
<td>In der Regel mündlich</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Voraussetzung für die Vergabe von Kreditpunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestehen der Fachprüfung (100% der Note)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

In dieser Vorlesung findet eine Anrechnung von vorlesungsbegleitenden Leistungen statt, die lt. §25(2) der 4. Novelle der APB und den vom FB 20 am 02.10.2012 beschlossenen Anrechnungsregeln zu einer Notenverbesserung um bis zu 1.0 führen kann.

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor of Education Informatik</td>
<td></td>
</tr>
<tr>
<td>Master of Education Informatik</td>
<td></td>
</tr>
<tr>
<td>LaG Informatik</td>
<td></td>
</tr>
</tbody>
</table>

| 9 | Literatur |

<table>
<thead>
<tr>
<th>10</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

- Fachdidaktik der Informatik 1-2
- Funktionale und objektorientierte Programmierkonzepte
- Algorithmen und Datenstrukturen
- Automaten, formale Sprachen und Entscheidbarkeit
Lerninhalt

Qualifikationsziele/Lernergebnisse/Kompetenzen
Die Studierenden

- sind in der Lage, zentrale Fachkonzepte der Fachwissenschaften zu identifizieren sowie diese in Bezug auf Langlebigkeit, ihre historische Entwicklung und Übertragbarkeit zu analysieren
- können Unterrichtskonzepte und -medien fachlich und sprachlich gestalten, unter Zuhilfenahme von Qualitätskriterien inhaltlich bewerten, neuere Forschung der Fachwissenschaft in Übersichtsdarstellungen verfolgen und so auch neue Themen in den Unterricht einbringen
- beherrschen den Zugang zu sowie die kritische Auseinandersetzung mit Quellen und den Ergebnissen fachwissenschaftlicher und fachdidaktischer Forschung
- erfassen und bewerten Sachverhalte in verschiedenen Anwendungsbezügen und Sachzusammenhängen, strukturieren und vernetzen diese
- nutzen Sprache sowie weitere Mittel der Kommunikation zur Vernetzung, Strukturierung und Veranschaulichung von Sachwissen der unterschiedlichen Fächer in Hinblick auf die Vermittlung an Kinder und Jugendliche
- stellen Fachthemen in adäquater, wenn nötig schülerspezifisch differenzierter, mündlicher und schriftlicher Ausdrucksfähigkeit sprachlich dar
- sind in der Lage, die individuelle, gesellschaftliche Relevanz der fachwissenschaftlich sowie curricular gegebenen Themenbereiche zu begründen und zu vermitteln
können verschiedene fachwissenschaftliche Aspekte als Beiträge zu politischer Partizipationsfähigkeit, sozialem Verantwortungsbewusstsein, Identitätsbildung sowie Klärung gesellschaftlicher Kontroversen vermitteln
- sind vertraut mit elementaren Arbeits- und Erkenntnismethoden der Fachwissenschaften und können diese auf Unterrichtsszenarien übertragen, insbesondere hypothesengeleitetes Experimentieren und Vergleichen sowie Konstruieren, Beweisen und empirischen Methoden, Quellenarbeit, rationales Beurteilen und Argumentieren
- können den allgemeinbildenden Gehalt fachwissenschaftlicher Inhalte und Methoden sowie deren gesellschaftliche Bedeutung anhand anerkannter Theorien und Begriffe beurteilen und begründen

<table>
<thead>
<tr>
<th>4</th>
<th>Voraussetzung für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studienleistung schriftlich/mündlich (Präsentation, Dokumentation, technische Umsetzung oder vergleichbare Leistungen)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Voraussetzung für die Vergabe von Kreditpunkten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bestehen der Modulabschlussprüfung (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Benotung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard. Die Einbeziehung eines Portfolios in die Benotung ist im Rahmen von §25 (2) APB möglich.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lehramt an Gymnasien Informatik</td>
</tr>
<tr>
<td></td>
<td>Vernetzungsbereich LaG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Literatur</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Kommentar</th>
</tr>
</thead>
</table>
Modulbeschreibung

Modulname
Seminar Angewandte Aspekte der Informatik im Unterricht

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0693-se</td>
<td>5 CP</td>
<td>150 h</td>
<td>120 h</td>
<td>1 Semester</td>
<td>In der Regel jedes Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jens Gallenbacher</td>
</tr>
</tbody>
</table>

1 Kurse des Moduls

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0693-se</td>
<td>Seminar Angewandte Aspekte der Informatik im Unterricht</td>
<td>5</td>
<td>Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

2 Lerninhalt
Umsetzung ausgewählter Themen für die Vermittlung in allgemeinbildendem und berufsbildendem Informatikunterricht

3 Qualifikationsziele/Lernergebnisse
- Fachdidaktische Theorien und die fachdidaktische Forschung für Lehren und Lernen kennen und darstellen
- Fachdidaktische Ansätze zur Konzeption von fachlichen Unterrichtsprozessen kennen, in exemplarische Unterrichtsentwürfe umsetzen und mit Methoden der empirischen Unterrichtsforschung auswerten und weiter entwickeln
- Schulische und außerschulische fachbezogene Praxisfelder erfassen und kritisch analysieren

4 Voraussetzung für die Teilnahme
Fachdidaktik der Informatik 1-2

5 Prüfungsform
Studienleistung schriftlich/mündlich (Präsentation, Dokumentation, technische Umsetzung oder vergleichbare Leistungen)

6 Voraussetzung für die Vergabe von Kreditpunkten
Erbringen der Studienleistung (100% der Note)

7 Benotung
Studienleistung (100% der Note)

8 Verwendbarkeit des Moduls
Master of Education Anteil Informatik für Andere
LaG Informatik

9 Literatur

10 Kommentar
Modulbeschreibung

Modulname
Praxisphase III: Fachdidaktische schulpraktische Studien Informatik

<table>
<thead>
<tr>
<th>Modul Nr.</th>
<th>Kreditpunkte</th>
<th>Arbeitsaufwand</th>
<th>Selbststudium</th>
<th>Moduldauer</th>
<th>Angebotsturnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0690-pr</td>
<td>5 CP</td>
<td>150 h</td>
<td>50 h</td>
<td>1 Semester</td>
<td>In der Regel jedes Winter-Semester</td>
</tr>
</tbody>
</table>

Sprache
Deutsch

Modulverantwortliche Person
Jens Gallenbacher

<table>
<thead>
<tr>
<th>Kurs Nr.</th>
<th>Kursname</th>
<th>Arbeitsaufwand (CP)</th>
<th>Lehrform</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-00-0690-pr</td>
<td>Praxisphase III: Fachdidaktische schulpraktische Studien Informatik</td>
<td>5</td>
<td>Praktikum</td>
<td>4</td>
</tr>
</tbody>
</table>

1 Lerninhalten
Didaktische und fachwissenschaftliche Analyse, Vorbereitung, Durchführung und Relexion einer Unterrichtsreihe oder einzelner Unterrichtseinheiten in der Schule mit dem Schwerpunkt der Vermittlung berufsbildender und allgemeinbildender Kompetenzen

2 Qualifikationsziele/Lernergebnisse
- Die Kompetenzentwicklung von Schülerinnen und Schülern theoretisch analysieren und empirisch beschreiben
- Grundlagen der fach- und anforderungsgerechten Leistungsbeurteilung und der Lernförderung darstellen und reflektieren
- Persönlichkeits- und Rollentheorien kennen und für das spezifische Unterrichtshandeln als Fachlehrerin oder Fachlehrer weiterentwickeln.

4 Voraussetzung für die Teilnahme
Für eine erfolgreiche Teilnahme werden die Kompetenzen aus den Veranstaltungen Fachdidaktik der Informatik 1-3 und aus Praxisphase I vorausgesetzt. Diese Veranstaltungen sollen daher abgeschlossen sein.

5 Prüfungsform
Studienleistung schriftlich/mündlich (Portfolio, Bericht)

6 Voraussetzung für die Vergabe von Kreditpunkten
Erbringen der Studienleistung (100% der Note)

7 Benotung
Studienleistung (100% der Note)

8 Verwendbarkeit des Moduls
Master of Education Anteil Informatik für Andere LaG Informatik

9 Literatur
| 10 | Kommentar |